Evidence that the Upf1-related molecular motor scans the 3′-UTR to ensure mRNA integrity
نویسندگان
چکیده
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation-terminating ribosome and then with a downstream exon-junction complex (EJC), which is deposited at exon-exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon-exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3'-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5'-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation-termination codon and a downstream exon-exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3'-UTR in the 5'-to-3' direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.
منابع مشابه
Rules that govern UPF1 binding to mRNA 3' UTRs.
Nonsense-mediated mRNA decay (NMD), which degrades transcripts harboring a premature termination codon (PTC), depends on the helicase up-frameshift 1 (UPF1). However, mRNAs that are not NMD targets also bind UPF1. What governs the timing, position, and function of UPF1 binding to mRNAs remains unclear. We provide evidence that (i) multiple UPF1 molecules accumulate on the 3'-untranslated region...
متن کاملUpf1 Senses 3′UTR Length to Potentiate mRNA Decay
The selective degradation of mRNAs by the nonsense-mediated decay pathway is a quality control process with important consequences for human disease. From initial studies using RNA hairpin-tagged mRNAs for purification of messenger ribonucleoproteins assembled on transcripts with HIV-1 3' untranslated region (3'UTR) sequences, we uncover a two-step mechanism for Upf1-dependent degradation of mR...
متن کاملBoth introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are different. In yeast, short specific sequences or long 3'-untranslated regions (3'-UTRs) render an ...
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملUpf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome.
Aberrant messenger RNAs containing a premature termination codon (PTC) are eliminated by the nonsense-mediated mRNA decay (NMD) pathway. Here, we show that a crucial NMD factor, up frameshift 1 protein (Upf1), is required for rapid proteasome-mediated degradation of an aberrant protein (PTC product) derived from a PTC-containing mRNA. Western blot and pulse-chase analyses revealed that Upf1 sti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012